Allelic Exclusion in pTα-deficient Mice: No Evidence for Cell Surface Expression of Two T Cell Receptor (TCR)-β Chains, but Less Efficient Inhibition of Endogeneous Vβ→ (D)Jβ Rearrangements in the Presence of a Functional TCR-β Transgene
نویسندگان
چکیده
Although individual T lymphocytes have the potential to generate two distinct T cell receptor (TCR)-beta chains, they usually express only one allele, a phenomenon termed allelic exclusion. Expression of a functional TCR-beta chain during early T cell development leads to the formation of a pre-T cell receptor (pre-TCR) complex and, at the same developmental stage, arrest of further TCR-beta rearrangements, suggesting a role of the pre-TCR in mediating allelic exclusion. To investigate the potential link between pre-TCR formation and inhibition of further TCR-beta rearrangements, we have studied the efficiency of allelic exclusion in mice lacking the pre-TCR-alpha (pTalpha) chain, a core component of the pre-TCR. Staining of CD3+ thymocytes and lymph node cells with antibodies specific for Vbeta6 or Vbeta8 and a pool of antibodies specific for most other Vbeta elements, did not reveal any violation of allelic exclusion at the level of cell surface expression. This was also true for pTalpha-deficient mice expressing a functionally rearranged TCR-beta transgene. Interestingly, although the transgenic TCR-beta chain significantly influenced thymocyte development even in the absence of pTalpha, it was not able to inhibit fully endogeneous TCR-beta rearrangements either in total thymocytes or in sorted CD25+ pre-T cells of pTalpha-/- mice, clearly indicating an involvement of the pre-TCR in allelic exclusion.
منابع مشابه
Perturbation of thymocyte development in nonsense-mediated decay (NMD)-deficient mice.
The random nature of T-cell receptor-β (TCR-β) recombination needed to generate immunological diversity dictates that two-thirds of alleles will be out-of-frame. Transcripts derived from nonproductive rearrangements are cleared by the nonsense-mediated mRNA decay (NMD) pathway, the process by which cells selectively degrade transcripts harboring premature termination codons. Here, we demonstrat...
متن کاملRegulation of T cell receptor (TCR) beta gene expression by CD3 complex signaling in immature thymocytes: implications for TCRbeta allelic exclusion.
During alphabeta thymocyte development, clonotype-independent CD3 complexes are expressed at the cell surface before the pre-T cell receptor (TCR). Signaling through clonotype-independent CD3 complexes is required for expression of rearranged TCRbeta genes. On expression of a TCRbeta polypeptide chain, the pre-TCR is assembled, and TCRbeta locus allelic exclusion is established. We investigated...
متن کاملPre-T-cell receptor binds MHC: Implications for thymocyte signaling and selection.
T cells play a major role in producing adaptive immune responses to microbes and cancers. T-cell development occurs in the thymus, starting from hematopoietic stem cells. There, CD4CD8 double-negative (DN) thymocytes that generate a functional T-cell receptor (TCR) β-chain express on their surface the pre-TCR (preTCR). Unlike the TCR itself, which comprises an α-chain and a β-chain, the preTCR ...
متن کاملMultiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes
Peripheral T lymphocytes each express surface T cell receptor (TCR) alpha and beta chains of a single specificity. These are produced after random somatic rearrangements in TCR alpha and beta germline genes. Published model systems using mice expressing TCR alpha and/or beta chain transgenes have shown that allelic exclusion occurs conventionally for TCR-beta. TCR alpha chain expression, howeve...
متن کاملChromatin conformation governs T-cell receptor Jβ gene segment usage.
T cells play fundamental roles in adaptive immunity, relying on a diverse repertoire of T-cell receptor (TCR) α and β chains. Diversity of the TCR β chain is generated in part by a random yet intrinsically biased combinatorial rearrangement of variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments. The mechanisms that determine biases in gene segment use remain unclear. Here we show, usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 186 شماره
صفحات -
تاریخ انتشار 1997